Aliquet morbi justo auctor cursus auctor aliquam. Neque elit blandit et quis tortor vel ut lectus morbi. Amet mus nunc rhoncus sit sagittis pellentesque eleifend lobortis commodo vestibulum hendrerit proin varius lorem ultrices quam velit sed consequat duis. Lectus condimentum maecenas adipiscing massa neque erat porttitor in adipiscing aliquam auctor aliquam eu phasellus egestas lectus hendrerit sit malesuada tincidunt quisque volutpat aliquet vitae lorem odio feugiat lectus sem purus.
Viverra mi ut nulla eu mattis in purus. Habitant donec mauris id consectetur. Tempus consequat ornare dui tortor feugiat cursus. Pellentesque massa molestie phasellus enim lobortis pellentesque sit ullamcorper purus. Elementum ante nunc quam pulvinar. Volutpat nibh dolor amet vitae feugiat varius augue justo elit. Vitae amet curabitur in sagittis arcu montes tortor. In enim pulvinar pharetra sagittis fermentum. Ultricies non eu faucibus praesent tristique dolor tellus bibendum. Cursus bibendum nunc enim.
Mattis quisque amet pharetra nisl congue nulla orci. Nibh commodo maecenas adipiscing adipiscing. Blandit ut odio urna arcu quam eleifend donec neque. Augue nisl arcu malesuada interdum risus lectus sed. Pulvinar aliquam morbi arcu commodo. Accumsan elementum elit vitae pellentesque sit. Nibh elementum morbi feugiat amet aliquet. Ultrices duis lobortis mauris nibh pellentesque mattis est maecenas. Tellus pellentesque vivamus massa purus arcu sagittis. Viverra consectetur praesent luctus faucibus phasellus integer fermentum mattis donec.
Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.
“Lacus donec arcu amet diam vestibulum nunc nulla malesuada velit curabitur mauris tempus nunc curabitur dignig pharetra metus consequat.”
Commodo velit viverra neque aliquet tincidunt feugiat. Amet proin cras pharetra mauris leo. In vitae mattis sit fermentum. Maecenas nullam egestas lorem tincidunt eleifend est felis tincidunt. Etiam dictum consectetur blandit tortor vitae. Eget integer tortor in mattis velit ante purus ante.
AI Agents are useful applications of AI and machine learning, but how are they made? This is a multi-part blog series going through the full steps of building an AI agent.
But first, what's an AI Agent? An AI agent is a software entity that perceives its environment, processes information, plans, makes decisions, and takes actions to achieve specific goals. AI agents can range from simple rule-based software and fixed workflows to fully autonomous systems.
Our documented steps will result in an MVP AI agent that anyone can follow. This is Part 1: Vision and Planning, where we ideate between two AI agent ideas for fun and explore what is necessary for creating a minimal viable product (MVP) before settling on which one to build.
Success comes from three key factors: a planned vision, achievable means, and efficient use of resources. — GMI's motto
We start by exploring the vision for two ideas:
Both of these are projects with tangible use-cases, detailed below:
Keeping up with industry conventions and conferences can be overwhelming. This AI agent aims to streamline the process by:
This AI agent would take an image of a person’s outfit—whether from a photo or a drawing—and attempt to find purchasable clothing items that match the look. The main functionalities include:
As fun as this would be to build, it's a great example of a simple idea with technical complications.
You want to avoid overcomplicating an AI agent, so we chose to not build this one. It's still something we'd like to probably create somewhere down the line as a fun project.
Once the idea is selected, it’s essential to clearly define:
This clarity ensures a focused development process with measurable goals. In our case, we can easily define these:
All of the above is our Vision. Now it's time to plan on how we'll execute with a Plan.
Building a functional AI agent requires:
To make this easier on us, we'll use a few open-source tools:
Every AI project comes with its own hurdles. Some key challenges for our project include:
By anticipating these challenges, AI agent builders can make informed decisions on feasibility and development strategies.
Stay tuned for part 2, where we'll document the steps we use to build an MVP of our Events Research AI Assistant!
Give GMI Cloud a try and see for yourself if it's a good fit for AI needs.
Starting at
$4.39/GPU-hour
As low as
$2.50/GPU-hour